

AFRL-IF-RS-TR-2004-205

Final Technical Report
July 2004

MULTI-TARGETED PROGRAM GENERATORS

University of Southern California at Marina Del Rey

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D890

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-205 has been reviewed and is approved for publication

APPROVED: /s/

Roger J. Dziegiel, Jr.
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JULY 2004

3. REPORT TYPE AND DATES COVERED
Final Mar 96 – Jul 03

4. TITLE AND SUBTITLE
MULTI-TARGETED PROGRAM GENERATORS

6. AUTHOR(S)
Robert Balzer

5. FUNDING NUMBERS
C - F30602-96-2-0192
PE - 63760E
PR - D890
TA - 01
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California at Marina Del Rey
4676 Admiralty Way
Suite 1001
Marina Del Rey California 90292-6714

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-205

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Roger J. Dziegiel, Jr./IFTB/(315) 330-2185/ Roger.Dziegiel@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Although, the benefits of "domain specific" languages and development environments are widely recognized,
constructing a design environment for a new domain remains a costly activity, requiring expertise in several areas of
software development and the targeted domain.
Elevating system development from the module to the architecture level requires a corresponding elevation in tools for
instrumenting, monitoring, and debugging systems. While there is a long history and mature technology for the former,
we have just begun to recreate these capabilities at the software architecture level. This report describes two
architecture level tools that utilize architecture level instrumentation to monitor software architectures through animation
and to create automated drivers for debugging or exercising subsets of those architectures. The latter has been used to
give "demonstrations" of distributed systems in which only the user interface is run live by driving that user interface
from previously recorded system executions.

15. NUMBER OF PAGES
41

14. SUBJECT TERMS
Software Architecture, Software Generators, Instrumented Connectors, Wrapper
Composition, Non-Bypassable Mediators 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

TABLE OF CONTENTS

1. Overview.. 1
2. Multi-Targeted Program Generators .. 2

2.1. Scope ... 2
2.2. Approach ... 2
2.3. Accomplishments .. 3

3. Instrumented Connectors.. 3
3.1. Scope ... 3
3.2. Approach ... 3
3.3. Accomplishments .. 4

3.3.1. Instrumenting Architectures.. 5
3.3.2. Architecture Animator... 14
3.3.3. Architecture Driver ... 14
3.3.4. Application Program Interface (API) SPY (Smiley).. 18
3.3.5. COTS Integration .. 21

4. Non-Bypassable Security Manager For Windows.. 32
4.1. Scope ... 32
4.2. Approach ... 33
4.3. Objectives.. 33
4.4. Accomplishments .. 33

4.4.1. Red Team Experiments ... 34
5. Published Papers... 36

 i

 LIST OF FIGURES

Figure 1. Communication Module…………………………………………………..6
Figure 2. Instrumented Connectors………………………………………………….6
Figure 3. Function with 3 mediators……………………………………………….10
Figure 4. Wrapper Invocation Overhead…………………………………………...12
Figure 5. Simulated Interaction…………………………………………………….15
Figure 6. Aegis Prototype Communications Architecture…………………………17
Figure 7. Aegis Prototype Architecture Snapshot………………………………….17
Figure 8. Snapshot of Testbed Controller Screen…………………………………..18
Figure 9. Design Environment Generation…………………………………………22
Figure 10. Domain Specification – Satellite Communication……………………….25
Figure 11. Property Specification Dialog ……………………………………………26
Figure 12. Design editing GUI – Satellite Communication Domain………………..28
Figure 13. Property Value Dialog…………………………………………………...28

 ii

1. Overview
This contract was aimed at developing the broad set of technologies required for
creating a new generation of code synthesizers, called component generators, that
adapt, through regeneration, components to changes in the architecture in which that
component operates. Such a capability would allow these generated components to
remain compliant as their architecture evolves and to become reusable assets that can
be adapted for use in multiple architectures. By eliminating the need to manually revise
code generators for each architectural change, this component adaptation technology
would remove major cost, expertise, and predictability barriers to the use of synthesis
technology in complex systems and place adaptation to an evolving architecture on an
equal footing with evolution of the component itself.

The original proposal consisted of a single task to develop architecturally-driven multi-
targeted program generators. This research on specification guided retargetable
component generation was planned to be carried out using a component generator that
was being constructed for DARPA's Advanced Distributed Simulation program.
However, when that program was terminated shortly after our contract started, so too
was the construction of that component generator.

Moreover, that terminated program was the target client of our architecturally-driven
program generators, planning to use our generators in its advanced simulations, and
was to jointly fund this task. However its termination occurred before that funding was
provided.

With the loss of both the client to utilize the technology to be developed under this task
and the funding it was to provide for that development, we focused our effort on
instrumenting, monitoring, and debugging software architectures in a task called
Instrumented Connectors.

This Instrumented Connector task produced a generic technology for dynamically
instrumenting software architectures and monitoring their behavior, and several tools for
utilizing this capability. It also allowed mediators to be placed in the connections
between components to control that behavior or to integrate those components into
larger aggregates, such as expanding PowerPoint into a design editor that allowed
external domain-specific design analyzers to interactively track an evolving PowerPoint
diagram and provide feedback on its well-formedness.

Because these Instrumented Connectors could be applied to arbitrary programs, without
source code access, we recognized that they could be used as a cyber-defense to
ensure that executing programs didn’t damage or destroy local resources (such as files
or the registry). This recognition led to the addition of an additional task to this contract in
1999 to develop a Non-Bypassable Security Manager for Windows NT.

Each of these tasks is described in the following sections.

 1

2. Multi-Targeted Program Generators

2.1. Scope
This project is developing the technology for a new generation of code synthesizers,
called component generators that adapt through regeneration, components to changes
in the architecture in which that component operates. This will allow these generated
components to remain compliant as their architecture evolves and to become reusable
assets that can be adapted for use in multiple architectures. By eliminating the need to
manually revise code generators for each architectural change; this component
adaptation technology will remove major cost, expertise, and predictability barriers to the
use of synthesis technology in complex systems. This will place adaptation to an
evolving architecture on an equal footing with evolution of the component itself.

2.2. Approach
The project will build an infrastructure for constructing a new generation of component
generators which accept an explicit description of the target architecture into which the
generated component must fit in addition to the specification of the functionality of that
generated component. This target architecture specification will be combined with the
component specification to produce a generated component for that architecture by
merging appropriate "targeting transformations" into the translation process.

Generator

Architecturally
Adapted

Component

Architecture
Specification

Component
Specification

These "targeting transformations" will be added to our common "back-end translator"
that converts the general purpose executable specifications produced by our "front-end
translators" from domain-specific specifications into operational code that uses the
interfaces and services defined in the specified target architecture. They will augment
the existing set of translation control rules in our "back-end translator" to specify the
code sequences needed to invoke these services and utilize the values they return.

This effort will be conducted in three phases. In the first, an existing program generator
that uses this meta-program infrastructure, but has wired-in implicit knowledge of its
target architecture, will be converted into a target directed component generator by
giving it the (limited) set of transformations and pragmatics needed to guide its
generation of components targeted to that architecture. Those transformations and
pragmatics will then be augmented as needed to guide that same generator to produce
components for a second target architecture. Finally, having filled in part of the space for
specific (preknown) target architectures, the project will start defining a range of
specifiable target architectures and the transformations and pragmatics needed to
support this entire range.

 2

These three phases of research on specification guided retargetable component
generation will be carried out using a component generator currently being constructed
for DARPA's Advanced Distributed Simulation program. That generator converts high
level specifications of Semi-Automated Military Forces into simulation modules that fit
into the ModSAF simulator and are compliant with its architecture. In the second phase,
this generator will be retargeted (via an explicit external architecture specification) to
convert those same specifications of Semi-Automated Military Forces into modules that
fit into another simulator, the Close Combat Tactical Trainer (CCTT), and are compliant
with its architecture.

2.3. Accomplishments
These three phases of research on specification guided retargetable component
generation were planned to be carried out using a component generator that was being
constructed for DARPA's Advanced Distributed Simulation program. However, when that
program was terminated, so too was the construction of that component generator.

Moreover, that terminated program was our target client, planning to use our generators
in its advanced simulations, and was to jointly fund this task. However its termination
occurred before that funding was provided.

With the loss of both the client to utilize the technology to be developed under this task
and the funding it was to provide for that development, we (with DARPA’s agreement)
suspended work on this task and focused our effort on the Instrumented Connectors
task to instrument, monitor, and debug software architectures.

3. Instrumented Connectors

3.1. Scope
This project is developing the technology to monitor the architectural behavior of legacy
systems, mediate those interactions, and architecturally integrate COTS products into
larger compositions.

By architectural behavior we mean all interactions between components or with the
operational platform. This includes network sockets, RPC, CORBA, OLE2, database
access/update, file I/O, terminal I/O, etc.

These mediators can be used to instrument architectures, monitor their behavior,
integrate legacy components together, or encapsulate potentially harmful or unreliable
components

3.2. Approach
Mediators are inserted into the channels through which architectural interactions occur.
These mediators are arbitrary programs that can examine the interactions passing
through the channel and can throw them away, substitute one or more new interactions,
or allow them to proceed unaltered. These mediators can also interact with other
mediators to decide what to do and can route the original or altered interactions to
additional recipients.

 3

Instrumented Connectors thus have two portions, an interception mechanism that gains
access to the interactions occurring within these channels and a mediation program that
is inserted into the channel to control those interactions.

The interception mechanism is platform specific and implementations have been
developed for both target platforms, UNIX and Windows. The mediators interface to
these implementations through a uniform API so that they can be inserted into different
types of channels.

Dynamic Link Library (DLL)
(UNIX and Windows)

• Mediator added between Module & DLL component
• Mediator maintains DLL component API

DLL

Module

Uniform mechanism for
 Intermodule Interactions
 • OS Services
 • Network Sockets
 • CORBA
 • ...

The intercept mechanism works by altering the link address of particular entries in a
dynamic link library as programs are loaded. The mediators to be inserted in the chosen
instrumented connectors are packaged into a newly formed dynamic link library which is
linked between the application and the original dynamic link library it intends to use. The
mediator thus receives all application interactions through the specified channel and can
decide whether to pass them along through the channel, modify them before or after
doing so, disallow the interaction, or provide its own response to the interaction.

3.3. Accomplishments
We developed the technology to monitor the architectural behavior of legacy systems,
mediate those interactions, and architecturally integrate COTS products into larger
compositions. These mediators can be used to instrument architectures, monitor their
behavior, integrate legacy components together, or encapsulate potentially harmful or
unreliable components.

Intercept mechanism implementations were originally built for SunOS 4.01 and
Windows95 without modifying the operating systems or the applications being
instrumented. The details of these implementations differ significantly because of the
differences in how dynamic link libraries are implemented and accessed on the two
systems. The intercept mechanism was subsequently ported to Windows NT, Windows
2000, and Windows XP. We believe this technique will work for other versions of UNIX
but have not yet done so.

Mediators are inserted at the time of establishing an interaction channel. Mediator must
exist as an executable module on the host platform at the time the channel is
established. Choice of which mediator to insert is made by a server (currently
centralized) from an architectural specification identifying particular connections to be
mediated and the mediator to be used for that connection.

 4

A database (currently centralized) of open channels is maintained as architectural links
are formed and broken. An animation tool exists to graphically depict the dynamic
architecture connection status. If the mediators also log the message traffic to the central
database, then this tool will also depict the message flows through the channels. It can
also display and highlight any additional flows introduced by the mediators (especially
helpful for demos).

3.3.1. Instrumenting Architectures
Our thesis is simply that the power of the architectural view arises from its focus on the
exchange of data and control between components and that for us to effectively design
and develop systems at this level; we need tools that provide access to this architectural
behavior. This is analogous to the power that our debuggers have given us for
subroutine organizations to trace calls to these subroutines, time their execution, and/or
insert breakpoints into these calls or their returns. What we therefore need to do is
provide similar access to the data and control passing through all the connectors used in
any architecture.

Restated in operational terms, our thesis is that by instrumenting the connectors in
architecture, developers can be given access to that architecture’s behavior
through a wide variety of architectural tools enabled by that instrumentation.

The problem of course is that we have widened the set of connectors used within our
architectures. Furthermore, it appears that each type of connector requires its own
instrumentation package that fits within the implementation of that connector. This
diversity of connector implementations is exacerbated by the fact that many of these
implementations are system provided and not user accessible or modifiable.

3.3.1.1. Instrumented Connector API
We addressed the first of these problems by creating a uniform interface for
instrumented connectors so that tools could use the instrumentation data from such
connectors, and could control the collection of such data, independently of the type of
connector.

These architecture tools receive the instrumentation data through a single stream
containing the merged instrumentation from each of the instrumented connectors to
which they are attached. Each packet consists of a time-stamp, the sender and receiver
of the information, and the transmitted data or an indicator of the connect or disconnect
operation that has just occurred on that connection.

These tools determine what data, if any, gets passed on through the connector to the
intended recipient(s). They can filter, modify, and/or add extra data to these
instrumented communication streams.1 They can also log this data or copy it to another
stream before passing it on.

1 Because the focus of our architecture research is on monitoring and debugging, the tools reported here

don’t filter, modify, or augment the communication stream between modules. However, other architecture
tools we are building utilize the full Instrumented Connector API.

 5

3.3.1.2. Instrumented Connector Implementations
We addressed the platform specific nature of connector implementations and their user
inaccessibility by creating multiple types of implementations of instrumented connectors.
The first, externally instrumented connectors, is based on indirection, is platform
independent, and doesn’t require any changes to the connector implementations being
used. However, it only works for connectors for which indirection can be specified (e.g.
network sockets and RPC), requires the configuration of the system being instrumented
be modified to include these indirections, and doubles the communication cost and
number of connectors.

The second type of implementation, internally instrumented connectors, avoids these
limitations by changing the platform provided connector implementations. This can only
be done when those implementations are accessible (to either users or system
administrators). Moreover, the changes are highly platform specific and must be
reimplemented on each platform of
interest.

Externally Instrumented Connectors
To create a platform independent
implementation of instrumented
connectors we adopted a strategy of
externally augmenting the existing
connectors with our instrumentation
package. We accomplished this by
creating an instrumentation intermediary
which sits between two communicating
modules and uses separate instances of
the connector to interact with each of
these two modules. Thus, the connectors
shown in Figure 1 have each been
replaced in Figure 2 by a pair of
connectors which connect our
instrumentation intermediary with the
original communicating modules. As
shown in Figure 2, each of these
instrumentation intermediaries is also
connected to some architecture tool
which consumes the merged set of
instrumentation packets passed to it by
these intermediaries and determines
which of those packets, possibly
modified, should be routed on to the
originally intended recipient.

Module

A

Module

B

Module

C

Figure 1: Communicating Modules

Each of these instrumentation
intermediaries consists of two processes
which constantly try to read from the two
connectors. As soon as data is obtained
from one of these connectors, it is
passed to the consuming instrumentation
tool which processes it and determines

I

I I

Module
A

Module
B

Module
C

Arch.
Tool

Figure 2: Instrumented Connectors

 6

whether it, or any other data, should be sent to the intended recipient.

This external intermediary strategy has the advantage that it doesn’t require access to
the internal implementation of connectors and works for many different types of
connectors, but introduces the overhead of an extra process and twice the
communication, and requires that the intermediaries be explicitly “wired” into the
configuration of the system.

Internally Instrumented Connectors
By replacing UNIX’s dynamic and static libraries we were able to instrument all of the
connectors it provides (e.g. network sockets, RPC, file I/O). The new libraries invoke the
architecture tool attached to the connector through the Instrumented Connector API
described above in a context in which the communication actions it performs utilize
UNIX’s original libraries.

Thus, the modified libraries did not have to reimplement UNIX’s communication
infrastructure. They merely had to allow the appropriate architecture tool to be invoked
through the Instrumented Connector API and allow it to utilize the original UNIX
communication infrastructure to perform whatever communication actions it chooses to
invoke.

This implementation was created for SUN-OS Version 4.3.1 for which source code was
available. Other versions of UNIX would require somewhat modified libraries. Other
operating systems, such as Windows NT, may require a completely different approach.

These internally instrumented connectors differ from the externally instrumented
connectors described in the previous section in an important way. The latter are
selectively configured into a system --- only those connectors that the architect wishes to
instrument are “reconfigured” to include the desired instrumentation through indirection.
However, with externally instrumented connectors all instances utilize the modified
implementation (the modified libraries), and hence the instrumented implementation.

To provide similar selectivity, a Selection Table must be constructed which indicates
which connectors to instrument and which architecture tool to attach to those that are
instrumented. This selection table is consulted whenever the modified library is invoked
(i.e. each time the application invokes a communication action).2 If the connection is
found in the table then the corresponding architecture tool is invoked through the
Instrumented Connector API. Otherwise, the requested communication action is simply
passed to the original UNIX libraries (i.e. the connection is not instrumented).

Mediator Scope
One can imagine several possible “scopes” over which a mediator might be active:

• all calls to the mediated function(s), regardless of their source

• only calls from designated processes

• only calls from designated threads

• only calls from designated modules (programs or other libraries)

2 In some operating systems, a dispatch table for the operations on a connection is created when that

connection is first formed. By encoding the selection determination into this dispatch table, the selection
table in these operating systems only needs to be consulted once, when the connection is formed, rather
than on each communication action through the connection.

 7

• only calls from designated trustees (user accounts or user groups)

Currently mediating connectors only support mediation by process scope. The primitive
for activating and deactivating requires a set of mediators (known as a wrapper) and a
process. The same wrapper may be active in multiple processes simultaneously if this
primitive has been invoked multiple times. Restricting the mediation by thread or trustee
can only be accomplished through conditionality in the mediation code itself.

Wrapper and Mediator Semantics
A Wrapper W comprises a set of mediators. Each mediator in the set mediates a distinct
function, F, which must be a function exported from some shared library. We use the
notation WMF to denote “the mediator for function F from wrapper W”. The functions
mediated by a wrapper need not all come from the same library.

A mediator WMF has access to the same parameters as F, and its return value, if any, will
be seen as a value returned by F. Within its implementation, a mediator may choose to
call F itself one or more times, using the result(s) of the call(s) to compute its own result.

Wrapper Composition
A wrapper implements an enhancement to one or more libraries that will provide new
functionality for one or more processes that use the libraries. We want to separate the
authoring of wrappers from the (“policy”) decision of which enhancement(s) should be
applied to which processes on which hosts. This forces us to provide semantics for
wrapper composition. The description presented in the preceding paragraph was based
on a simplistic view that a function has only one mediator.

A wrapper defines one or more virtual libraries. Installing a wrapper in a process means
forcing the process to use those virtual libraries. We will use the notation LW to denote
“the virtual library L defined by wrapper W”. To define wrapper composition, we define
how the composition induces a composition of their respective virtual libraries. We will
denote the composition of wrappers V and W by V W. In general wrapper composition
is not a commutative operation. To emphasize the potential asymmetry, we will read this
as “V surrounding W”.

When the virtual libraries defined by two wrappers have disjoint base libraries, the
composition of the wrappers simply defines the union of the virtual libraries – in this
case, the composition is commutative.

Two wrappers may both attempt to mediate functions from a common library. That is,
wrapper W may contain VMF and wrapper V may contain WMG, where F and G are
different functions in the same library L. Using our “virtual library” metaphor, V and W
each define a distinct version of L – LV and LW.

Because the virtual libraries are not opaque binary implementations, but rather
specifications (described below) of wrappings around selected API’s of the base library,
it is possible to compose the specifications to produce a single virtual library
specification. In the case of mediators for distinct functions the composition is trivial. It
is just a union of the specifications – the effective virtual library, L(V W), contains both
VMF and WMG. The composition is again commutative.

But what if wrapper V contains VMF and wrapper W contains WMF? Our solution is to
provide a notion of nested mediators in a virtual library. In this case L(V W) contains a
mediator for F that we denote by VMF WMF, and read as “VMF surrounding WMF “. The

 8

mediator nesting operator is associative – (m n) p is the same as m (n p). We thus
find it simplest to understand the following general case. Suppose F is a function from
library L, and the effective virtual library L’ defined by wrapper composition provides
m1 m2 … mk as the mediator for F (each ml is a non-nested mediator).

• When a process using L’ makes an outer call (described below) on F, the
outermost enabled mediator for F gains control.

• When a mediator mi executes an inner call (described below), the outermost
enabled mediator surrounded by mi in the nesting for F gains control.

• In both cases, if there is no such mediator, the original (unmediated)
implementation of F – the one in L itself -- gains control.

Suppose wrappers V and W are composed as described above -- the effective mediator
for F is VMF WMF. If both are enabled, an outer call on F will transfer control to VMF.
However, if VMF is disabled, an outer call on F will transfer control to WMF. If both are
disabled, an outer call will pass control to F. If VMF executes an inner call, control will
pass to WMF if it is enabled, or to F otherwise. If WMF executes an inner call, control will
pass to F itself.

Wrapper enablement is a boolean, per-thread, attribute of a wrapper. When we refer to
a mediator WMF being enabled or disabled, in the context of a call on F, we really mean
that W is enabled or disabled in the calling thread.

Currently, the only mechanism for disabling a wrapper W is to have W’s auto-disable
attribute set. The effect of setting this attribute is that, whenever any mediator WMF gets
control, W will be disabled in the calling thread. It will be re-enabled when WMF returns.
The setting of auto-disable is part of a wrapper’s definition and cannot be changed
dynamically. As a consequence, a thread’s calling stack will never contain frames for
both WMF and WMG simultaneously, nor will it ever contain multiple frames for WMF.3 If you
specify auto-disable for a wrapper W, then you are allowing all calls that occur
dynamically within any mediator of W to go unmediated by W.

Outer Calls and Inner Calls
All calls on a function F that occur dynamically outside the implementation of any
mediator of F are termed outer calls. A non-composite mediator m=WMF has access to
two “versions” of F that it may (but need not) call:

• The implementation seen by non-mediators. Calls on this version are outer calls.
If WMF happens to be the only (enabled) mediator for F, and if W is auto-disabling,
then an outer call executes F’s original implementation.

• The inner version relative to WMF. Calls on this version are termed inner calls. If
m itself is the effective mediator for F, or is the innermost mediator of a composite
mediator m1 m2 … m, the inner version is F’s implementation in the original
library. If the effective mediator for F is m1 m2 … m mi … mk, then the inner
mediator is mi … mk.

3 This behavior is not sensible in general for threads which contain multiple fibers, where wrapper enablement

should be a per-fiber, not a per-thread, attribute. However, if neither the mediators nor the mediated
function itself actually switch fibers, the behavior is the same as if enablement were really tracked on a per-
fiber basis.

 9

Note that neither of these versions is necessarily, but that either may be, the original
implementation of F from its library. Also note that, if W is not auto-disabling, then even
an inner call may lead to a recursive entry of WMF. This can occur if an inner mediator, or
even the original definition of F, performs an outer call on F.

Figure 3 depicts a function F with three mediators, and shows the entry points for an
outer call and for an inner call from the middle mediator. The figure assumes all three
are enabled.

Figure 3: Function with 3 mediators
Most primitive mediators will, at least conditionally, need to make an outer or inner call to
compute their result. As the above analysis indicates, the two kinds of call may have
different results, depending on:

• Whether the mediator’s wrapper has the auto-disable attribute. This is
controlled by the wrapper’s author, so it is known when the mediator is coded.

• Whether the mediator has been composed with other mediators. This is
generally not known when the mediator is coded. Currently, no runtime utilities are
provided to query a mediator’s position in a composition, so it is not possible to write
a mediator which chooses between outer and inner calls at run time.

Fortunately, a few rules of thumb can help sort out this complexity, at least in the case
where a wrapper is intended to compose with as-yet-unknown other wrappers.

• A mediator WMF should make an outer call if, and only if, (a) the call is passing
different parameters than those passed to the mediator, or (b) prior to making the
outer call the mediator has changed global state that is documented as relevant to
F’s result. Making an inner call in these cases would deprive any outer mediators
of an opportunity to mediate the revised call.

• An outer call should only be made conditionally. A mediator must ensure that, at
least in the absence of other mediators, it can break the recursion created by outer
calls.

 10

• Use of the auto-disable attribute implies knowledge about composition, because the
mediators of such a wrapper will be unable to mediate outer calls originating in
wrappers they surround. When auto-disable is omitted from a wrapper’s
specification, however, each mediator WMF must ensure that it does not initiate a
calling sequence that will lead to a recursive outer call of F with identical parameters
and state. In particular, a cycle could result from calling some function other than F
that leads to an outer call on F. This is rarely a problem, but if it is unavoidable WMF
must use thread-local state to detect and break the recursion.

Not all applications of wrappers, however, require building wrappers that can
compose with others. In such cases, there are both conceptual and performance
advantages to using the auto-disable attribute.

Mediators that Fail Intentionally
Functions in Windows NT libraries communicate their results back to a caller in one or
more of the following ways:

• a single return value

• modification of parameters

• modification of global or thread-local state

If a mediator WMF fails to use the same conventions for returning results as does F itself,
it is likely to cause an error in the calling process or an outer mediator. This is of
particular concern when WMF wishes to “fail” even though F, when called in the same
context and with the same parameters, would not fail. Windows NT provides an implicit
thread-local integer error value variable to every process. Many API’s which can “fail”
indicate failure by both (a) returning a designated value (typically NULL) that is never
returned in a successful call, and (b) setting the error variable to provide the caller with
more detail about the nature of the failure. A mediator that wants to indicate failure
should be implemented to set this variable as well as return the designated value.
Usually one of the documented values for the error value will be suitable for the
mediator’s purposes – meaning that the calling process should be prepared to deal with
that error from F itself.

Wrapper Definition
Wrappers are defined in ASCII files. Although we conventionally give these files “.wrp”
file type, the software neither relies on or defaults to that type.

A wrapper definition looks like:

wrapper name implementation impdll [properties]
 wrap APIname in dll with mediator size integer
 ...
 wrap APIname in dll with mediator size integer
name is an arbitrary name chosen for the wrapper. Currently, this name is used only to
designate a wrapper to remove from a process, and to ensure that each wrapper
installed in a process has a distinct name. For these purposes, the name is case-
sensitive. The name will play a more prominent role when site administration facilities
are added. impdll is the library which implements the wrapper.

 11

Each wrapper has two boolean-valued properties. There are four keywords that may be
used in properties to specify these properties.

• propagate or no_propagate specifies whether the wrapper is self-propagating.
Self-propagating wrappers are discussed in Wrapper Propagation. If neither keyword
is present in attributes, the wrapper will be self-propagating.

• auto_disable or no_disable specifies whether the wrapper is auto-disabling.
See Wrapper and Mediator Semantics for details. If both keywords are omitted from
attributes, the wrapper will not be auto-disabling.

Each wrap directive identifies one mediator for the wrapper. dll is the library containing
the function to mediate, and APIname is the function’s name. mediator is the name of
the function exported from impdll that is to mediate APIname. Finally, integer is the
number of bytes of parameter expected by the function named by APIname.

Wrapper Restrictions
No wrapper may specify multiple mediators for a single API.

Each wrapper installed in a process at any one time must be implemented by a distinct
library.

Each function used as a mediator must be exported from the library under the name
used in the wrapper definition.

Mediator Performance
The technique used to implement mediators imposes some overhead on each call to a
mediated function – the linkage from the caller to the mediator is not a simple “call” or
(indirect) “jump”. This overhead is independent of the number of mediators placed on an
API and also independent of the API being mediated, except for a small amount of code
that copies parameters and is proportional to the number of bytes of parameter. The
overhead involves the algorithm depicted in Figure 4.

 Figure 4: Wrapper Invocation Overhead

 12

Whenever an outer call is made on a mediated API F, or whenever a mediator for F
issues an inner call, the mediation runtime manager will find the next enabled mediator
to be invoked. If no mediators remain to be called, the original implementation of F is
invoked. If a mediator is found and its wrapper is not auto-disabling, the mediator is
simply invoked. Otherwise, the wrapper is marked as disabled during the period the
mediator is active.

It is clear from the flowchart that the cost of running WMF is increased if W is marked as
auto-disabling. However, the additional overhead will be more than reclaimed in
savings if WMF makes any outer calls on F or any calls on other functions being mediated
by W, because each such call will be able to completely bypass the execution of its
mediator in W.
There are situations where an outer and an inner call are equivalent, such as when the
only mediator of a function belongs to an auto-disabling wrapper. In such cases, the
inner call is slightly, but almost certainly negligibly, more efficient.

Parametric Wrappers
It is possible to write a wrapper whose behavior is parameterized by values established
when the wrapper is installed in a process. For example, a wrapper that limited use of
some shared resource might allow a numerical limit to be provided at wrapper
installation time rather than at wrapper definition time.

A wrapper parameter’s value is determined by a process installing a wrapper and
consumed by the process in which the wrapper is installed. These are almost always
distinct processes. For that reason, the parameter value may not be, or contain,
pointers from the installing process’ address space. A wrapper parameter value is
simply an arbitrary size block of data whose first four bytes contain that size. The
interpretation of the data is a matter on which the wrapper and the installer must agree.

Wrapper Propagation
When a process with installed wrappers spawns a new process (via one of Window’s
CreateProcess APIs), any self-propagating wrappers from the spawning process will be
installed in the new process as well. The wrapper parameter is propagated as well.

The method by which wrappers are propagated ensures that they are installed in the
new process before that process’s main thread begins execution.

Propagated wrappers will have the same nesting relationships in the new process as
they had in the spawning process.

No wrapper state is propagated to the new process. Removal of a wrapper from a
process has no affect on its presence in processes to which, or from which, the wrapper
was propagated.

Wrapper Installation Atomicity
The installation primitive for installing a wrapper executes within the process being
mediated. Correct operation of the mediators may depend on all of them being installed.
If other threads of the mediated process are active while the installation is being carried
out, those threads might execute in a state in which some, but not all, of the functions
being mediated have had their calls rerouted. For GUI-based applications this is

 13

generally not a problem, since the mediators can be installed while all threads are
blocked waiting for user input.

3.3.2. Architecture Animator
The Architecture Animator displays the architecture of an instrumented system as a
graph in which the components are nodes labeled by the component name and the
connectors are links between these nodes. As the connections between the components
are made and broken the graphic depiction of the connector is respectively displayed
and erased. As data is passed through the connector a short identifying label is
displayed along the connector together with an arrow indicating the direction that data is
flowing through the connector.

The Architecture Animator works by sequentially processing connector instrumentation
packets. These may either be packets coming from a live execution of the instrumented
system or previously recorded packets stored in a file. The state change captured in
each instrumentation packet is displayed on the architecture graph and the animator
moves on to the next packet. A speed parameter allows the user to slow the display
update down to an acceptable rate or to temporarily halt further screen updates.

3.3.3. Architecture Driver
Like the Architecture Animator, the Architecture Driver also sequentially accesses
connector packets. However, unlike the Architecture Animator the objective is not
updating the architecture’s state on a display for the user, but rather to exercise the live
execution of some subset of the instrumented system by simulating the behavior of the
rest of that system.

Consider a simple system consisting of the three modules shown in Figure 5. Each
module has a single connector to each of the other two modules through which it
communicates with them. Finally, assume that Module A is to be exercised by the
Architecture Animator because a new version has been produced which we want to
unite and integration test with the rest of the system, because we need to examine it in
a controlled environment, or because that module displays interesting behavior that can
be used as a “demonstration” of the entire system (if properly driven by a simulated
environment).

 14

I

I

Module

A

Module
B

Module
C

Recorded
Scenario

Execution

Live Simulated

Simulated

Arch.
Driver

Figure 5: Simulated Interaction
As shown in Figure 5 the live modules (Module A in this example) are run with
instrumented connectors that funnel all the output of the live modules to the Architecture
Animator. These outputs are not passed on to their intended recipients (here Modules B
and C) through the instrumented connector as they normally would because those
modules are not actually being run, but instead are being simulated by the Architecture
Animator. The Architecture Animator also sends the outputs of the simulated modules,
which it obtains from the recorded scenario, that are intended for the live modules
through the instrumented connectors.

These packets are always read from a previously recorded instrumented execution of
the system which contains the behavior of each module in that system. The Architecture
Animator sequentially sifts through the recorded instrumentation packets to find all the
ones that contain either communications intended for, or communications coming from,
one of the live modules. The former are used to provide the inputs needed by the live
modules as they execute, and the latter are used to track the progress of those live
modules through the recorded scenario to determine when it is appropriate to provide
them with those inputs.

This progress tracking is central to the Architecture Animator’s ability to create an
accurate simulation for the live modules. It rests upon monitoring the outputs of the live
modules (provided by the instrumented connectors) and correlating them with
instrumentation packets in the previously recorded instrumented execution of that
system.

When an instrumentation packet is found which contains communication from a
simulated module to one of the live modules, it is immediately sent to the corresponding
live module through the appropriate instrumented connector. The Architecture Animator
then continues with the next instrumentation packet that either contains communication
for, or communication from, a live module. The former are processed as just described.

However, when the Architecture Animator reaches an instrumentation packet which
contains output from a live module, then it stops processing further information packets
for that connector until the corresponding output from the live module is received through
the appropriate instrumented connector. Correspondence between the recorded and live

 15

scenarios is defined by the sequence index of those outputs in each connector. That is,
the nth recorded output from a live module through a connector corresponds to the nth
live output from that module through the same connector. Thus, the Architecture
Animator demands that the temporal ordering within a single connector remain constant.
However, it allows the ordering between connectors to be non-deterministic.

This non-determinism between the ordering of outputs received through different
connectors reflects the inherent asynchrony of distributed systems, or even concurrent
processes interleaved on a uniprocessor. The Architecture Animator contends with this
asynchrony by maintaining separate reader processes for each connection with the live
module(s). Each such reader process is in an infinite read-then-queue loop in which it
repeatedly does a blocking-read for data being output by the live module and then FIFO
queues that data on the received-inputs queue associated with that connection.

When the main Architecture Animator process, which is sifting through the information
packets in the recorded scenario execution encounters an output from a live module, it
examines the received-inputs queue associated with the corresponding connection. If it
is non-empty it removes and treats it as the output that corresponds to the output just
obtained from the recorded scenario execution. If the received-inputs queue is empty,
the Architecture Animator waits for the live module output it needs to continue its
progress through the recorded scenario execution. Thus, the Architecture Animator will
slow down and wait for anticipated outputs from the live module(s), and will thus ensure
that those anticipated outputs are not altered by the premature arrival of simulated inputs
that occurred subsequently in the recorded scenario (because it will not process any
subsequent portions of that recorded scenario until the anticipated output is received).

In addition to time synchronizing the simulated inputs to the execution speed of the live
module(s) by maintaining a correspondence between the outputs of the live module(s)
and the recorded scenario, the Architecture Animator also checks whether these
corresponding outputs are equivalent. If so, then the live module is behaving as
“predicted” by the recorded scenario. Otherwise, the live module has deviated from the
recorded scenario and the Architecture Animator signals an “off-scenario” exception.

The Architecture Animator allows both the definition of equivalence and the handling of
off-scenario exceptions to be user-defined. The former is accomplished through a user
supplied predicate which compares the recorded and live outputs and determines
whether they should be considered equivalent. The latter is accomplished by giving
control to a user supplied routine which can provide application specific responses (i.e.
simulated inputs to the live module), indicate when and where the live and recorded
scenarios have been resynchronized (if ever), or cause a break.

It also allows the user to supply a routine which selects the recorded execution to use for
driving the live module(s). This capability is necessary if this determination is to be made
dynamically during the execution of the live module(s), rather than before they start
execution.

3.3.3.1. AEGIS Example
The DARPA ProtoTech community has created a next generation prototype of a portion
of the Aegis system which tracks and responds to predicted intersections of hostile and
friendly aircraft with three dimensional geometric regions attached to ships or fixed to the
surface of the earth. The responses include issuing friend-or-foe challenges, concluding
that an aircraft is hostile and launching missiles against hostile aircraft.

 16

The prototype consists of five modules, each produced in a different prototyping
language developed within DARPA’s ProtoTech program, a Track Server which provides
radar track data (position, course, speed, acceleration, etc.), and a Testbed Controller
which allows users to construct scenarios, control their execution, monitor the operation
of the prototype, and display intermediate results.

 Create Connector Create Component Toggle Connector Status

Testbed Controller
Restore Architecture Run Stop Save Architecture

Doctrine

The communication architecture for this prototype is shown in Figure 6. All of these
inter-module connections are via UNIX network sockets.

Using our externally instrumented connectors implementation of network sockets, we
recorded the execution of several different scenarios. We then used the Architecture
Animator to display the architecture level behavior of the prototype on these scenarios.
Figure 7 is one screen snapshot showing which connections were established at that
instant and what the most recent message was along each of those established
connectors together with its flow direction.

Authoring Track Server

Doctrine
Reasoning

GeoServer

Doctrine
Validation

Battle
Display

Figure 6: Aegis Prototype Communications Architecture

 Create Connector Create Component Toggle Connector Status

Testbed Controller
Restore Architecture Run Stop Save Architecture

Doctrine
Authoring Track Server

Doctrine
Reasoning

GeoServer

Doctrine
Validation

Battle
Display

>: Tick

^:Get_Doctrines <:Operator_Alert

<:Track_Data

>: Intersections

Figure 7: Aegis Prototype Architecture Snapshot

 17

10:52:43 Alert Engaging N7666 with weapons from ENGAGE
Figure 8: Snapshot of Testbed Controller Screen

Finally, Figure 8 is a snapshot of the Testbed Controller’s screen, taken during its live
execution in the simulated environment created by the Architecture Driver, which shows
the position, course (direction of the green line), speed (length of the green line), and
altitude (length of vertical tan line) of friendly (blue) and hostile (red) aircraft, their
predicted intersections (colored line segments lying along the aircraft’s path) with fixed
(polygon) and moving (donut and circle-minus-wedge) geometric regions, the predicted
missile firing and engagements points (the head and tail of the dotted pink lines), and the
operator messages issued (along the bottom of the display).

The important point is that this display is exactly as it would appear in a live execution of
the entire Aegis prototype, even though the Testbed Controller is the only module
actually executing and its display combines the Testbed Controller’s local information
with data computed by the simulated modules (the predicted intersections provided by
the GeoServer and the predicted missile firing and engagements points and operator
messages provided by the Doctrine Reasoning module).

Moreover, once the internally instrumented connectors implementation is used (when
the selection table implementation is complete), the Testbed Controller can be used
completely unmodified. However, because UNIX sockets are the only type of connector
we have instrumented in the externally instrumented connectors implementation
currently being used, we had to make one change to the Testbed Controller so that the
Architecture Driver could simulate the execution of whatever scenario the user
dynamically selected through the Testbed Controller’s interface. This interaction with the
user occurred through an X-window menu selection and resulting in opening the
selected scenario file, both of which are invisible to the Architecture Driver since it
doesn’t have instrumented connectors through which it can monitor these
communications. We therefore modified the Testbed Controller to write a file containing
the name of the user selected scenario. The user-supplied recorded instrumentation
selector (one of the Architecture Driver’s parameters) used the contents of this file to
identify the recorded execution corresponding to this selection.

3.3.4. Application Program Interface (API) SPY (Smiley)
We implemented an API Spy that enables users to monitor intermodule API interfaces,
including parameters and return values, to understand the interactions between those
modules. Users can interactively choose which functions in which libraries to monitor,

 18

how to format the recording of those function calls, and the conditions under which to
cause a break. This tool is our primary means of determining which interfaces to mediate
when creating a new wrapper.

We also created a Mediation Toolkit to simplify the use of this mediation technology by
other developers so that they can create and install their own mediators. The toolkit
consists of the API Spy, the mediation installer and wrapper propagator and a set of
macros for invoking the original interface being mediated and catching and signaling
exceptions.

Smiley is an interactive utility that allows an analyst to log information about calls on
functions exported from dlls. The logging takes place only for processes, libraries, and
functions designated by the analyst. The analyst determines the content of the logged
information (e.g., which, if any, parameters to include) and can set breakpoints on
selected calls, transferring to a debugger to explore a program’s state, or single-step the
program’s execution, when a breakpoint is reached.

Through its interactive graphic interface, the analyst opens one of the displayed running
processes by left-clicking its name. Smiley then lists, indented below the process name,
the names of all shared libraries currently in use by that process. The analyst left-clicks a
function name within an open library to select that function for monitoring. A camera icon
appears next to the name to indicate that it is being monitored. The analyst may also
select or unselect groups of functions to monitor (by their link status (static or dynamic)
or by name matching).

Having selected one or more functions from one or more libraries of a process for
monitoring, the analyst clicks the command button labeled “Monitor”. Monitors for the
selected functions are then installed in the running process.

A Smiley Trace window for the process then appears. The window contains a scrollable
text display and four command buttons. Although the monitors were installed by the
“Monitor” command, they are inactive. (The process itself may be running, but the
monitors are not reporting calls.) To activate the monitors the analyst clicks the
“Resume” button in the trace window. As calls on the monitored functions occur in the
monitored process, a trace appears. Each call produces a single line of text, displaying
the name of the function and the thread id of the calling thread. Indentation is used to
help visualize nested calls.

At any time, the analyst may click the trace window’s Pause button to deactivate the
monitors in a process. He can later reactivate them with the Resume button. When
monitoring is paused, the analyst is able to scroll through the (often voluminous) trace
information in the text window, or use “copy and paste” to copy the trace text to another
program.

To remove the monitors from a process entirely, the analyst closes the trace window
using the standard Close button. He may do this while the monitors are inactive or
active.

When a process invokes a monitored function, a report is generated for the process’s
Smiley trace window. Because transmission of the report to the Smiley process occurs
asynchronously, there may be a considerable latency in the appearance of reports.
They always appear in the order in which the calls occurred, however.

 19

3.3.4.1. Adjusting the Set of Monitored Functions
If the analyst is dissatisfied with the set of functions being monitored, he can simply
remove the monitors (by closing the trace window), modify his selections in the Smiley
Control GUI, and click the “Monitor” button to install the updated selection.

Frequently, however, he finds that the trace window is being flooded with calls on one or
two of the selected functions, and he would simply like to deselect those. This is
accommodated directly from the Smiley trace window. With monitoring paused, the
analyst selects trace lines from one or more of the monitored functions. He then clicks
the “Unmonitor Selected APIs” button to remove those functions from the monitoring set,
and reactivates the remaining monitors with the “Resume” command.

3.3.4.2. Reporting Parameter and Return Values
Although the order, nesting, and threads of function calls can provide important insight
into a program’s implementation, far more can be learned if the log contains the
parameter and result values of the calls as well. To obtain such augmented traces, the
analyst makes use of Smiley’s “Monitor Tailoring” pane.

When a function is selected in the Process Composition pane, the Monitor Tailoring
pane displays that function’s prototype – the order of parameters, their types, and the
return type, if any. The Monitor Tailoring pane also provides two text boxes in which the
analyst specifies the content of trace output he would like reported on entry to and exit
from calls on that function.

In the trace output specifications, the analyst can include both literal text and parameter
values. Parameter values are referred to with the notation %n%, where n is the index of
the parameter whose value is to be printed in the output. In the “after” box, the analyst
can also refer to the value returned from the function call using the notation %0%.

Other notations in the trace output specifications allow the analyst more control over the
formatting of the parameter and return values, such as printing in decimal or hex, or
printing the value of fields of structures pointed to by parameters or results.

3.3.4.3. Breakpoints
In addition to the text boxes for before/after trace output specification, Smiley’s Monitor
Tailoring pane has two checkboxes. These are used to set breakpoints at the entry
and/or exit of a monitored function. A breakpoint can be set regardless of whether any
corresponding trace output is specified. When a breakpoint is reached, control is
transferred to the analyst’s preferred debugger. Precisely what can be done at that point
is debugger-specific. With the Microsoft Visual Studio debugger, for example, the
analyst can follow pointer paths from the function’s parameters and can step through an
assembly language level representation of the code. Using the debugger’s “resume”
command, execution continues with all Smiley’s monitors and breakpoints in place.

3.3.4.4. Persistence
Having selected a set of functions to monitor, and possibly tailored some of those
monitors as just described, an analyst often wishes to perform the same monitoring on
multiple runs of a program, or even on other programs. The analyst can give a name to
such a configuration of monitors and register the configuration through Smiley’s

 20

configuration management pane. The same pane allows the analyst to view the names
of registered configurations and restore one of them to a selected process.

Configurations are registered on a per-library basis That is, a named configuration
contains only monitoring selections for a single library. To save and restore a
configuration in which functions from several libraries are monitored, the analyst must
save and restore a configuration for each library involved.

3.3.5. COTS Integration
We used our instrumented connector technology to integrate several COTS products
with each other or into larger aggregations with third-party tools. The most extensive of
these was the extension of Microsoft PowerPoint into an architectural editor, but we also
integrated EMACS as the message composition editor for Eudora, extended Internet
Explorer into a Personal Web Annotator, and also extended it into an Ad blocker.

Each of these COTS integrations is described in the following subsections.

3.3.5.1. Architecture Editor (from PowerPoint)

Summary
PowerPoint has been extended into an architecture editor (called the Design Editor) by
instrumenting its connection to its user interface. As architecture diagrams are
constructed and modified in PowerPoint, a logical database of the evolving architecture
is dynamically maintained. Each change to the architecture is analyzed in real time and
static analysis errors are graphically depicted as annotations on the diagram. This
integration was accomplished without any changes to PowerPoint.

Motivation
Domain-specific languages and development environments are frequently proposed as a
means to improve the productivity of designers. Although prototypes of such languages
and environments proliferate in conference proceedings, commercially viable examples
remain rare. We believe that the reason for this is primarily the difficulty of implementing,
not of designing, a high-quality design environment for a new domain.

There are two major parts of a domain-specific design environment for an engineering
domain. The first is a graphic user interface that lets an engineer intuitively manipulate
the objects constituting a design, create reusable sub-designs, and navigate within and
between designs. The second is an integrated toolset that provides the engineer with
feedback on a design – problems, metrics, scenario animations, etc.

We believe that the first portion – the GUI – requires only shallow knowledge of the
application domain on the part of the environment builder. The second problem,
although it may have graphical presentation aspects, relies on a much deeper
understanding of the domain.

Implementation
The Design Editor generator addresses these two areas in disparate ways. It simplifies
the GUI-building task by extending a high-quality commercial, but nondomain-specific,
platform for constructing and presenting graphics – Microsoft PowerPoint – rather than

 21

some lower-level graphic library such as Motif or GUI constructors such as VisualWorks
or Visual Basic. The generator’s “specify by example” paradigm casts the creation of the
GUI for a new domain as a graphical task in its own right, rather than a programming
task. PowerPoint itself provides the preponderance of the design editing GUI, which is
common across engineering domains.

The design environment generator provides a flexible runtime architecture for
incorporating feedback programs (called analyzers) into the generated environments.
These analyzers can be written in the programming language, and run on the machine,
of the implementer’s choosing. The communication protocols used by the analyzers and
the design editor allow analyzers to be written using either batch-oriented or incremental
algorithms. This flexibility should make it relatively easy to import preexisting domain-
specific feedback programs into the generated design editor environments.

The analyzer-editor protocols also support common graphical presentation requirements
of feedback, permitting the design editor to reflect analyzers’ results directly onto a
graphical design, rather than requiring an analyzer to provide its own GUI for that
purpose.

Figure 9 shows the roles of the domain expert, the analysis programmers, and the GUI
designer in producing a domain-specific design environment for engineers.

 Figure 9: Design Environment Generation

 22

Domains and designs
Common to numerous engineering domains is the “box-and-arrow” character of visual
designs. Boxes represent components of a design artifact. Each component denotes an
instance of some component type – resistors and capacitors, tasks and workers,
cargoes and vehicles – the types used are highly domain specific. Each arrow
represents a relationship between the components at the ends of the arrow. These
relationships may be physical, temporal, or neither. A single design may reflect several
different relationship types – such as control flow and data flow in a software algorithm.
In most domains, not all instances of a given component type are identical. So the types
are parameterized by properties — such as the capacity of a storage tank or the power
of a lens. Like components, relationships may also have properties – such as the gauge
of a wire or the delay of a communications link. We currently support properties with
boolean, integer, real, and string values, as well as with values from domain-specific
enumerated types. A property value may consist of a single value from one of these
types or a set of values.

The units of a design are the component and relationship instances in the design.
Knowing the unit types of a domain and the properties of each constitutes the shallow
syntactic knowledge of the domain. By itself, it is not sufficient to produce a semantically
meaningful, much less useful, design.

Nevertheless, this shallow knowledge is significant because this is the level of
information exhibited in graphic designs. This simply reflects the fact that this level of
representation is sufficient for two crucial purposes:

• Engineers (or software) with a deeper understanding of the domain can derive the
information they need from it. It thus serves as the basis for analysis and
communication between engineers.

• Other people (or software) can construct artifacts from it (i.e. implement the specified
design) without the need for a deeper understanding of the domain.

Our work focuses on leveraging the central role of these shallow domain models within a
design environment. Our contributions are:

1. Generate a domain-specific design editor for a domain without any traditional
programming
2. Provide a framework for analysis programs to track an evolving design and provide
feedback.
3. Generate the domain model for these analysis programs

Analyzers and Analyses
Although graphical designs are often used solely for their value for human visualization
and communication, they become more valuable if software tools can also provide
analyses and/or implementations of a design. Informally, we consider an analysis to be
any body of information derived from a design. Examples of analyses are:

• Design correctness feedback

• Cost and performance analyses

• Automatically generated implementations of software designs

• Animating a usage scenario on a design

 23

Each domain has its own idiosyncratic analyses, whose requirements for design data,
synchronization, and feedback mechanisms may vary substantially. To accommodate
these variations the design environment architecture allows analyzers to be independent
components that communicate with the editor through an object-oriented protocol for
exchanging design information and analysis feedback. The design editor provides an
analyzer with incremental updates to the design state. An analyzer may also query the
editor to find out about particular aspects of the design state. This allows a variety of
implementation techniques to be used in analyzers.

An analysis may be parameterized. The parameters of an analysis are just like the
properties of a design unit, with one exception. An analysis may be “focused”. What
this means is that it has a parameter consisting of a set of units from the design being
analyzed. An analyzer will typically use this focus parameter to restrict its analysis to the
portion of the design designated by the focus set.

Analyzers execute as separate processes, possibly not even on the same machine as
the design editor itself. The relative independence of analyzers means that an analyzer
could implement its own GUI for presenting analysis results to a designer. However, to
simplify the implementation of analyzers, and provide for graphical presentation of
feedback on the design itself, analyzers may make use of a predefined reporting
mechanism in the analyzer-editor protocol.

An analyzer may send the editor an analysis consisting of one or more results. Each
result consists of a textual explanation together with a (possibly empty) set of markups.
The markups provide graphic feedback to augment the explanation. Each markup can
specify:

• that a unit be highlighted

• that a unit be hidden

• that a component port or arrow terminus be labeled with specified text.

For example, a report might have the explanation “Only one input is allowed at the
control port of a thermostat.” The accompanying markups might call for highlighting two
arrows terminated at the same control port of a thermostat, and labeling that port with
the text “too many inputs”.

We divide analyses into two categories: snapshot analyses and incremental analyses.
An incremental analyzer that uses the report/markup mechanism for presenting
feedback is expected to update the analysis each time that it receives an update to the
design state.

Updates to the design state are actually grouped into transactions in the editor-analyzer
protocol. Incremental analysis updates are expected to follow each transaction. A
designer might select several components through the editor GUI and delete them all
with a single command. The editor groups the deletions into a single transaction to
report to analyzers. This avoids the need to report analysis updates relative to
ephemeral states that are meaningless to the designer.

 24

Figure 10: Domain Specification – Satellite Communication

Specifying New Domains and Generating Design Editors for them
The GUI described below in the Design Editor GUI section contains no novel features.
We wish to reiterate that there is only a superficial understanding of the domain
represented in the GUI itself, excluding the content of the analysis results. The novelty
comes from two sources, the first of which is the means used to generate that GUI. The
second, extending a widely used COTS product, is discussed in the next section.

The “Satellite Communications” GUI was generated with no traditional programming. Its
specification, created through another graphic interface, is shown in Figure 10. The
(green) rectangles labeled “Comsat”, “Sensor”, “User”, etc. determine the domain’s
component types. The cross shapes attached to them by dashed connections are their
graphic templates. This determines the appearance of an instance of the type when an
engineer instantiates it in a design. The GUI designer either chooses a graphic template
from a large library of shapes, or may import an image, in any of a variety of image
formats, as a graphic template. The GUI designer tailors the template’s color, border,
and label text in this graphic domain specification.

A type specified may be connected (via a curved solid connector) to an image that
serves as the tool icon for the type in the generated domain toolbar. Tool icons, like
graphic templates, may be selected from a shape library or use an imported image. If no
tool icon is specified, a scaled version of the graphic template is used as the tool icon.

The (gold) arrow shape labeled “Link” provides the sole relationship type in this domain.
The dashed, double-headed arrow attached to it is the graphic template for the “Link”
relationship type. The GUI designer tailors the color, dashing and arrowhead styles of a

 25

relationship template in the graphic domain specification just as he tailors component
type templates.

Single-inheritance hierarchies of unit types can be specified by placing abstract types,
such as “Satellite”, in the design. Properties can be associated with either abstract or
unit types. Property definitions are entered through a dialog like the one in Figure 11. A
specification consists of a name, a type selected from a drop-down list, optional
upper/lower bounds for numeric types, required/multiple indications, and a textual
explanation. The explanation will appear in a small pop-up window when the designer
hovers the mouse on the “tab” for that property in a property-editing dialog.

Any unit or relationship type may have initial property values specified through a
property-editing dialog, identical to the ones used by designers. The default values are
assigned when new instances of the type are created.

 Figure 11: Property Specification Dialog

Figure 10 contains the specification of two global root analysis groups, “Designer
Studies” and “Path Studies”, and eight analyses. The color and styling of the border of
an analysis specify the means used to highlight components and relationships directed
from markups in the feedback from the corresponding analyzers. Analogously, the text
characteristics – font, face, size, color – of the label of an analysis specify the textual
characteristics of any on-design markup text found in feedback from the analysis.

Generating Design Editors for New Domains
The specification-by-example editor is little more than a domain-specific editing
environment specified with its own (partially bootstrapped) graphic domain specification
for the “domain-definition domain”. A PowerPoint presentation file created by editing a
design in the domain-definition domain serves as the specification for a new domain.
Currently, the file name itself serves as the new domain’s name. When a designer
begins editing a design for a domain D, D’s graphic specification is loaded in an invisible,
read-only, mode into PowerPoint. The design editor then extends PowerPoint’s GUI by
interpreting the content of that graphic domain specification.

We have implemented two “analyses” for the domain-definition domain. The first reports
various errors such as unnamed types, circular inheritance, types without templates, etc.

 26

The second “analysis” is a generator that produces an ASCII file containing definitions
(in CommonLisp) for classes that correspond to those defined in the domain definition.
A domain-independent CommonLisp module provides a mapping between this Object
Oriented (OO) model and the editor-analyzer protocol. CommonLisp analyzers can then
be implemented for this domain by programmers without any knowledge of DCOM and
with all of the classes of that domain suitably defined.

Design Editor GUI
The central component of the design editor is its GUI. The editor’s GUI provides the
interactive user with means to load/save designs, navigate within designs,
create/delete/copy components and connectors, view and modify properties of
components and connectors, and request analyses.

Figure 12 below is a screen shot of an editor generated for a “satellite communications”
domain. Everything in the figure is part of the GUI with the exception of the callouts
highlighting specific elements.

Readers familiar with Microsoft PowerPoint will immediately recognize many elements
from that product’s GUI in this figure. This is discussed in detail in the Advantages of
Extending PowerPoint section. Here we focus on the domain-specific aspects of the
GUI.

In the central canvas is the design of a “satellite communications” configuration. The
various labeled shapes represent instances of satellites, terminals, switches, processors,
and users – the component types of the domain. They are connected by arrows
representing communication links – the only relationship type used in this domain.

The designer created these design units through unit creation tools on the domain
toolbar, seen near the upper right of the figure. To the immediate left of these tools is a
drop-down list box displaying the name of the domain (“Satellite Com”). When a
designer starts a new design, this box allows him to choose a domain. This triggers
creation and display of the appropriate domain toolbar. Manipulation of units on the
canvas – positioning, resizing, selecting, attaching/detaching links – is carried out
through conventional mouse gestures and/or keyboard shortcuts.

The window displays a list of reports. In this example, there was just one report. Its
explanation reads “User U3 is directly connected to user U2.” When the designer selects
a report, its associated markup instructions are carried out. Their effect is reversed if the
report is deselected, or the analysis window is closed. In this case, the only markup
instruction called for highlighting the communication link between U2 and U3. That is
why that link has an appearance (a thin red arrow) different from the others.

Property values are viewed and assigned through dialogs, displayed on demand from
the unit context menus.

 27

Figure 12: Design editing GUI – Satellite Communications Domain

Figure 13. Property Value Dialog

Figure 13 exhibits the dialog for a sensor satellite. The dialog contains a “tab” for each
property associated with the type in the domain specification. The details of a tab
depend on the value type of its property and on of the domain specification. Identical
dialogs are used to gather the parameter values for parameterized analyses.

 28

Implementing the Design Environment with a COTS product
The design editor is implemented as an extension to Microsoft PowerPoint, programmed
in Visual Basic. Technically, this extension is a COM server that receives “events” as the
user modifies a design. The same module acts as a COM client of PowerPoint enabling
it to navigate through a design and to paint analysis feedback directly onto the design.
For efficiency reasons, this module runs as an “in-process” server. This means it is
actually part of the PowerPoint process itself. Method calls are extremely fast when both
client and server are part of a single operating system process. Greater efficiency could
be achieved by implementing the extension in C++, but the performance of the Visual
Basic code has been acceptable to us to date.

Design editor - analyzer protocol
When an analyzer process starts, it registers its interest in one or more domains, and
registers as the provider of one or more analyses. As designs are loaded into the design
editor, or modified, the design editor receives events from PowerPoint, interprets those
events in terms of changes relevant to analyzers, and notifies registered analyzers.

When a designer requests an analysis and provides its parameters, the design editor
notifies the registered analysis provider. That analyzer is subsequently expected to
send the design editor an analysis. The design editor then presents the analysis to the
designer.

Every update sent to an analyzer is marked with a monotonically increasing transaction
count. When an analyzer reports an analysis, it includes the transaction count at which
the analysis was computed. Any visible analysis based on a non-current design state is
visibly marked as out-of-date by coloring the background of its report window.

When an analyzer has provided an incremental analysis, it is expected to update the
analysis each time it receives a design update from the editor. When the designer
closes an incremental analysis, the analyzer is notified and ceases to transmit updates.

The protocol allows an incremental analysis to be updated either by total replacement or
by selective deletion and addition of reports

Communication between the design editor and analyzers takes place via distributed
COM (DCOM). The rationale for choosing DCOM over, say, CORBA, to implement
communication between the design editor and analyzers is only that Visual Basic, the
language in which we implemented the design editor, trivializes the implementation of
DCOM clients and servers. The fact that PowerPoint itself exposes (D)COM interfaces
is not a factor, because currently the design editor does not pass analyzers direct
references to any PowerPoint objects.

Although we have not done so, it would be reasonable to further categorize analyses as
synchronous vs. asynchronous. Synchronous analyzers could use a simpler protocol
(no need for transaction counts) and be allowed to run as “in-process” servers for high
performance.

Advantages of Extending PowerPoint
PowerPoint is marketed as, and known to most of its users as, a presentation graphics
editor. As such, it is viewed as an interactive editor of presentations consisting of
multiple slides. However, it is also a high level graphic server, permitting independently
written modules to read and update almost any aspect of its state and invoke numerous

 29

methods through an object-oriented COM interface. But what does PowerPoint offer
that is missing from traditional “visual interface” authoring tools?

Primarily, PowerPoint offers a highly functional GUI for interactively designing
presentation graphics. Virtually every part of that GUI is useful, without modification, as
part of our design editor. This includes:

• Scrolling, zooming, scaling, multi-slide designs

• Loading/Saving/AutoSaving designs, multiple windows, multiple views.

• Object deletion, selection, grouping, cut/copy/paste, and text formatting.

• Object positioning, alignment, rotation, reflection, resizing, graphic formatting.

• Connectors – self-routing lines/arrows whose ends attach to other objects, and
adjust automatically to repositioning and resizing.

We emphasize that it is not simply the fact that PowerPoint has a library with methods
for accomplishing these operations, but that it has a functional GUI that allows the
designer to invoke them conveniently. If one thinks of an engineering design as a
specialized PowerPoint presentation, it is not surprising that we have found no reason to
remove any of PowerPoint’s standard GUI. For example, any graphic object created
through conventional PowerPoint tools may be placed in a design. Such annotations will
persist with the design but will be invisible to analyzers – just as comments in
programming languages are invisible to compilers.

One other feature of PowerPoint, though not part of its GUI, has also leveraged our
implementation. PowerPoint allows arbitrary information to be associated with
presentations, slides, and graphic objects in the form of string-valued tags. This is
sufficient for the design editor’s needs to store its own non-graphic design information,
such as the property values that a designer has assigned to a unit. PowerPoint ensures
that this information persists as part of the saved presentation document – no additional
persistence mechanism had to be implemented for these extensions.

Finally, we note that the PowerPoint GUI is already familiar to many engineers, who use
PowerPoint to present designs to clients and other engineers. In fact, some of them
have commented that they have existing PowerPoint presentations they would like to
import into our design editor.

Disadvantages of Extending PowerPoint
We should not give the impression that extending PowerPoint’s GUI provides the same
flexibility as building a hand-tailored design editor GUI.

The biggest impediment was the lack of “event” notifications in PowerPoint. Most of the
design editor’s activity must be triggered by some event in the GUI – or, more
specifically, by a state change initiated from some GUI event. For our own GUI
extensions (such as our dialog for editing unit attributes) there was no problem providing
suitable notifications to the editor. However, detecting events initiated through the native
PowerPoint GUI was a serious problem. Although a COM interface could make relevant
events available, the interface implemented by PowerPoint97 does not. We developed
a Design Monitor that employed two mechanisms to overcome this limitation.

The menu items and control buttons in the PowerPoint GUI are objects in the
documented model. We found a way to replace them with equivalent ones whose
reactions invoked our own code, which internally synchronously invokes the original

 30

reaction. The mechanism is obscure, but relies only on documented operations and is
fully general. For menu items, this method works independent of whether the invocation
is by mouse or by keyboard shortcut.

However, “wrapping” the action associated with a command does not always provide an
efficient means to determine the design-relevant events performed by the action. An
extreme example is the “Undo” command. Although we may have control both before
and after PowerPoint executes that action, we have no effective means, short of a
complete comparison of before and after states, to determine the relevant state
changes. The best we can do is simply remove such tools from the GUI, which is trivial.
However, removal is undesirable, because the tool provides useful functionality for
design editing, just as it does in editing presentation graphics. We have not found a
satisfactory solution.

Events initiated by mouse clicks and motion within a design window were far more
problematic. PowerPoint provides its extenders with no insight into those events or,
more interestingly, into the changes to its state that result from handling them. Like any
Windows program, mouse events are communicated to PowerPoint by the operating
system through a message queue. Like other Windows programs, PowerPoint often
responds to the lowest level mouse events by placing other, higher-level, events into its
own message queue. Mechanisms independent of PowerPoint allow us to monitor
messages being removed from this queue. Based on observations from a “message
spy” program, we have developed ad-hoc rules to determine localized bounds (generally
the currently “selected” units) for what may have changed in a design. We can then
efficiently determine what design-relevant changes actually occurred by comparing our
cached old state with PowerPoint’s current state within the affected locale. The fact that
we are not concerned with most graphic details speeds up this comparison significantly.

Version considerations
Using a COTS product as a system component makes version upgrade concerns more
significant than is the case with conventional runtime library components. How will a
new version of PowerPoint impact the design editor? Because our designs and domain
definitions are fully standard presentations, the new version will certainly automate any
file format changes required to make them work. All our code that relies on the
advertised (D)COM object model should require no change, because numerous other
third party PowerPoint extensions rely on the same model. Existing menu items and
controls in PowerPoint’s GUI might be removed, relocated, or renamed, but adapting to
those changes would be trivial. New controls or menu items might appear, but our ability
to wrap their actions simplifies dealing with them. However, because our rules for
interpreting the significance of messages in the message queue are based only on
observation of the current version, there is reason to expect they might have to be
revised in potentially non-trivial ways.

3.3.5.2. Integrating EMACS as the Message Composition Editor
for Eudora

By instrumenting the connector between the user interface (Windows) and the
application, EMACS has been integrated as the editor for replying to messages in
Eudora. When the reply button is clicked in Eudora, the body of the reply is sucked out
of Eudora, placed in an EMACS buffer, and EMACS is switched to as the current
window. When the composition of the body is complete, it is pushed back into Eudora,

 31

the message is queued for delivery, and Eudora is switched to as the current window.
Neither COTS tool was changed.

3.3.5.3. Personal Web Annotator (from Internet Explorer)
We developed a Personal Web Annotator that dynamically adds information to pages
being downloaded to reflect local information. Annotations include New and Updated
icons for links that are respectively new and modified since last read by the user (known
by monitoring the user's browsing) and displaying the user's personal ratings for links
previously visited.

3.3.5.4. Ad Buster (from Internet Explorer)
We also developed an Ad Buster for eliminating unwanted advertisements from
downloaded web pages. This was accomplished by simply modifying the communication
restrictions of our Safe Execution Environment for Web Browsing to prohibit
communication with those sites hosting these advertisements.

4. Non-Bypassable Security Manager For Windows
We have explored how such architecture mediation, including requests for operating
system services, can be used to enhance COTS products by transparently providing
them with enriched services and by transparently integrating them into larger
aggregations.

As Phase 1 of this effort we conducted a technical feasibility study to explore whether
this same mediation technology could be used to create a non-bypassable Security
Manager for the Windows NT operating system. That study concluded that a non-
bypassable Security Manager for NT is feasible using our mediation technology called
Instrumented Connectors.

Phases 2 and 3 of this effort were funded under this contract to create respectively a
non-bypassable version of these Instrumented Connectors for the Windows NT
operating system, and to use these non-bypassable Instrumented Connectors to
construct a Security Manager for Windows NT. This Windows NT Security Manager will
mediate requests for operating system services and interactions with other processes
and determine whether to allow or prohibit those requests and interactions. This
determination will be governed by a set of administrator supplied rules which define what
programs are, and are not, allowed to do.

4.1. Scope
Programs interact with one another to obtain and provide services. By monitoring and
mediating these interactions, a third party can control how those programs interact. It
can prohibit particular interactions, change the services requested and/or provided, and
alter the perceived environment in which one or more of the programs operate.

We developed the technology to encapsulate the execution of arbitrary programs so that
they can be safely executed. This enables people to share and use applets, active
controls, agents, and downloaded programs while ensuring the integrity and survivability
of their information and computational resources.

 32

4.2. Approach
We created a non-bypassable version of our Instrumented Connector technology so that
when mediators are installed between a program and its services there is no way for that
program to obtain those services without going through the installed mediators. This
requires that the program can neither undo the installation of the mediators nor create
another path to the services that does not go through the installed mediators.

In addition, the installation of these mediators must occur at the very beginning of the
execution of the program so that it is unable to obtain any of the "mediated” services
before those mediators are installed. Finally, the program must not be able to prevent
the installation of the mediators. That choice is the provenance of the separate Windows
NT Security Manager constructed under Phase 3 of this effort (and under this contract).

4.3. Objectives
ISI will build a mechanical transformer to modify binary versions of the Windows NT
operating system (i.e. no source code is required) to incorporate non-bypassable
mediators by placing the mediators themselves into the operating system so that service
requests necessarily pass through these mediators.

ISI will build a mechanism to deploy the mediators for a program before that program
starts to execute so that the program’s entire behavior is mediated.

ISI will build a Security Manager for NT that installs these non-bypassable Instrumented
Connector wrappers on newly spawned processes as they are started in accordance
with a policy specification it is given. This policy specification will detail which wrappers
are to be placed on which processes whenever they run.

The Security Manager will also propagate all wrappers installed on a process to all
processes that it spawns unless explicitly overwritten in the policy specification.

To facilitate the management of wrapper installation and policy, ISI will develop a
wrapper installation database that contains the set of installed process wrappings (i.e.
each installation of a wrapper on a running process). ISI will also develop a wrapper
policy database that contains the set of wrappings specified for newly spawned
processes in the security policy specification. Both databases will have a query API that
allows the contents of these databases to be dynamically examined.

ISI will also provide an API for dynamically changing the security policy for which
wrappers to install on newly spawned processes. The API will allow these changes to
either be made globally or localized to the (future) offsprings of one or more existing
processes.

4.4. Accomplishments
We implemented non-bypassable mediators so that even malicious programs can
neither remove nor bypass the installed mediators. This non-bypassability enables
suspect and/or malicious programs to be sandboxed to protect sensitive information
from being accessed or modified and other program executions from being disrupted.
DARPA's ISO Information Assurance program funded the implementation of this
capability.

We built a Security Manager for NT that installs non-bypassable Instrumented Connector
wrappers on newly spawned processes as they are started in accordance with a policy

 33

specification it is given. This policy specification details which wrappers are to be placed
on which processes whenever they run. The Security Manager also propagates all
wrappers installed on a process to all processes that it spawns unless explicitly
overwritten in the policy specification. DARPA's ISO Information Assurance program
funded the implementation of this capability.

We developed a safe execution environment for Web browsing. This execution
environment ensures the safe execution of both Netscape Communicator and Microsoft
Internet Explorer running with arbitrary Java and ActiveX applets so the full power and
interactivity of Web material can be utilized. User specified rules restrict which files can
be read and written, which parts of the registry can be read and written, which remote
sites can be communicated with for uploading and downloading information, and which
processes can be spawned.

We developed a safe execution environment for running office products. This execution
environment ensures the safe execution of Microsoft office products even when they
load documents with arbitrary macros. It uses the same set of meditors as employed by
the Safe Web Browser to restrict the behavior of possibly malicious macros. However,
the set of rules followed by these mediators differs and is tuned to the needs of the
specific office product (e.g. it prohibits modification of templates to prevent macro
propagation).

4.4.1. Red Team Experiments

4.4.1.1. Protected Path Experiment
In support of our task to increase the robustness and survivability of Instrumented
Connectors, we've designed and are participating in a Red-Team experiment under
ISO's IA program to determine whether Instrumented Connectors can establish
protected paths on the Windows NT platform.

This experiment tests whether such protected paths can be established between:

1. a smart card and an application (Netscape) that obtains certificates from the smart
card
2. the keyboard and the smart card that obtains the user's PIN to unlock the data
contained on the smart card.

In this experiment, we attempted to use our Instrumented Connectors to keep the
information passing through these protected paths from being snooped or tampered
with.

To test the strength of these protections, the Red Team was given Administrator/Root
privileges and the ability to run any programs they want.

Results

Using a variety of hacker tools downloaded from the web, the Red Team was unable to
snoop on or tamper with either of the protected paths established for the experiment.

However, with access to the source code for the wrapper defenses and knowledge of
how they worked, the Red Team was able to discover an unmediated (i.e. unprotected)
NT interface that gave them access to keyboard data. Using this unprotected NT

 34

interface they were able to write a program that snooped the key entered by the user
through the keyboard.

Lessons Learned
1. Wrappers appear to be able to mediate selected NT interfaces and limit the usage
of those interfaces to protect the resources controlled and accessed by those
interfaces.
2. The size and complexity of the NT interface makes it difficult to ensure that all
interfaces that need to be mediated to protect particular resources have been
identified.

4.4.1.2. Hardened Client Experiment
As part of DARPA's OPX program, our SafeEmailAttachments wrapper was integrated
by BBN with SCC's Autonomous Distributed Firewall and a commercial file encryption
package to produce a "Hardened Client."

This Hardened Client was subjected to a Red Team attack (by the SRI Red Team) to
test the strength of the defenses. Flags were placed to force the Red Team to attack
each of these technologies.

Results
For our SafeEmailAttachments wrapper, the Red Team tried a variety of attacks using
different types of attachments and message scripts. Most of them were blocked by the
wrapper defenses, but two of them succeeded.

The first utilized a known vulnerability to tunnel below the wrapper defenses and remove
them. At the time of the experiment DARPA had already funded an effort to fix this
vulnerability, but the existence of this known vulnerability and its planned repair wasn't
communicated to the Red Team. So they independently "discovered" and exploited this
vulnerability.

The second successful attack resulted from a coding error in the defenses that failed to
canonicalize a security rule before installing it. This allowed the resource that the rule
was supposed to be protecting to be accessed and used to mount a multi-stage attack.
Once this rule was canonicalized, this attack was blocked by the SafeEmail wrapper.

Lessons Learned
While the vast majority of the Red Team effort was devoted to the first attack, very little
was learned since this exploited a vulnerability known to the defenders.

On the other hand, the success of the other attack was a surprise to both the attackers
and the defenders, as they both expected the defense to block the transfer of data
between the attack's multiple stages. The success of the attack forced us (the
defenders) to track down the cause of the failure to block this data flow. In doing so, we
discovered several vulnerabilities in the defense that could have been exploited (but
weren't) before we uncovered the real reason for the failure (not canonicalizing the rule).

 35

4.4.1.3. Non-Bypassability Experiment
DARPA has asked Sandia to conduct an independent assessment of our SafeEmail
system (SafeEmail utilizes our Instrumented Connector technology but was developed
under a separate DARPA contract), including its NonBypassability Protection.

We prepared documentation for Sandia to conduct this assessment, briefed them on the
system's concept of operations, and answered questions on the system's operation.

Results
They discovered a vulnerability in our NonBypassability Protection that enabled them to
defeat the protection it affords. This vulnerability utilized an error handler to field the
error that arose from transferring control directly to the non-forgeable instruction
signaling the kernel driver that trusted code had been entered (rather than entering this
code through its normal entry point). This instruction was executed, putting the kernel
driver into its trusted mode, and then when execution continued with the following
instruction the error it caused (because the registers were purposely missed) transferred
control to the attacker's error handler.

We designed a response to this class of attack in which the kernel driver disables any
error handlers in the calling process before returning control to that process. Any error
arising in the code following the non-forgeable instruction now causes the process to be
aborted rather than allowing the attacker to gain control in the trusted mode. Before the
trusted code returns control to the caller of a mediated API, it restores any error handlers
that existed before the call on that mediated API.

5. Published Papers
The following selected set of attached papers that were published during this contract
document the work performed on the various tasks and describe the accomplishments
achieved:

1. Balzer, R., Instrumenting, Monitoring, & Debugging Software Architectures
2. Goldman, N. M. and Balzer, R., The ISI Visual Design Editor Generator
3. Balzer, R. and Goldman, N. M., Mediating Connectors
4. Balzer, R. and Goldman, N. M., A COTS Based Design Editor with User-Specified
Semantics
5. Goldman, N. M., Smiley – An Interactive Tool for Monitoring Inter-Module Function
Calls

 36

	TABLE OF CONTENTS
	LIST OF FIGURES
	Overview
	Multi-Targeted Program Generators
	Scope
	Approach
	Accomplishments

	Instrumented Connectors
	Scope
	Approach
	Accomplishments
	Instrumenting Architectures
	Instrumented Connector API
	Instrumented Connector Implementations
	Externally Instrumented Connectors
	Internally Instrumented Connectors
	Mediator Scope
	Wrapper and Mediator Semantics
	Wrapper Composition
	Outer Calls and Inner Calls
	Mediators that Fail Intentionally
	Wrapper Definition
	Wrapper Restrictions

	Mediator Performance
	Parametric Wrappers
	Wrapper Propagation
	Wrapper Installation Atomicity

	Architecture Animator
	Architecture Driver
	AEGIS Example

	Application Program Interface (API) SPY (Smiley)
	Adjusting the Set of Monitored Functions
	Reporting Parameter and Return Values
	Breakpoints
	Persistence

	COTS Integration
	Architecture Editor (from PowerPoint)
	Summary
	Motivation
	Implementation
	Domains and designs
	Analyzers and Analyses
	Specifying New Domains and Generating Design Editors for the
	Generating Design Editors for New Domains
	Design Editor GUI
	Implementing the Design Environment with a COTS product
	Design editor - analyzer protocol
	Advantages of Extending PowerPoint
	Disadvantages of Extending PowerPoint
	Version considerations

	Integrating EMACS as the Message Composition Editor for Eudo
	Personal Web Annotator (from Internet Explorer)
	Ad Buster (from Internet Explorer)

	Non-Bypassable Security Manager For Windows
	Scope
	Approach
	Objectives
	Accomplishments
	Red Team Experiments
	Protected Path Experiment
	Results
	Lessons Learned

	Hardened Client Experiment
	Results
	Lessons Learned

	Non-Bypassability Experiment
	Results

	Published Papers

